If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2-144=0
a = 1; b = 3; c = -144;
Δ = b2-4ac
Δ = 32-4·1·(-144)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{65}}{2*1}=\frac{-3-3\sqrt{65}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{65}}{2*1}=\frac{-3+3\sqrt{65}}{2} $
| 5=(24x-1) | | 1.9+x=3.62 | | 3-2x+5=9-3x | | −8=4(2x−4) | | 2=v-37 | | 18k+30=10k+46 | | X2+46x+529=0 | | 69x+149x=240 | | -3(5-9k)=25+7k | | M-25=m | | 5x-3=8-2x+1 | | 61=v+25 | | 0.69x+1.49x=24 | | 132=p | | 60m+39=579 | | 85=7y | | 4w+10=70 | | -x+10=21-2x | | 0.69x+24=1.49 | | 4x*1=3x+2 | | x=6-16 | | 2(2x+14)=44 | | x=16-6 | | 10×c=13.71 | | 5x+5+5x+I=10x+84+10x-100 | | -8y-1=55 | | d-(-4)=9 | | -4y+1=-35 | | 8u+8=6 | | –10n=8−9n | | 8y+2=82 | | -7x+2=65 |